

Integrated design for demonstration of efficient liquefaction of hydrogen (IDEALHY)

Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

Grant Agreement Number 278177

Title:	A Review of Available Information on the Hazards of Liquid Hydrogen Production, Storage and Road Transportation (Publishable Summary)
Authors / Project Partner:	B. J. Lowesmith and G. Hankinson / University of Loughborough
Work Package	Whole Chain Assessment
Deliverable Number:	3.9
Date:	28 October 2012
Report Classification:	Restricted (here: Publishable Summary)

Approvals		
WP Leader	✓	
Coordinator	✓	
FCH JU	pending	
Contacts		
B.J.Lowesmith@lboro.ac.uk info@idealhy.eu		

Disclaimer

Despite the care that was taken while preparing this document the following disclaimer applies: The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof employs the information at his/her sole risk and liability.

The document reflects only the authors' views. The FCH JU and the European Union are not liable for any use that may be made of the information contained therein.

Publishable summary

Hydrogen is seen as an important energy carrier for the future which offers carbon free emissions at the point of use. In particular, hydrogen could be used to power vehicles using hydrogen fuel cell technology and thereby replace the use of petrol and diesel. In the absence of a hydrogen pipeline supply network, which would be costly and take considerable time to build, hydrogen could be supplied using road tankers. However, transporting hydrogen by road as a compressed gas is very inefficient and supplying liquefied hydrogen (LH₂) by road tanker is seen as the most effective way forward in the medium term. This will require large quantities of LH₂ to be produced, stored and transported for re-fuelling vehicles.

The IDEALHY project receives funding from the European Commission's 7th framework programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative. The project has the aim of developing a new hydrogen liquefaction process which will enable LH₂ production to be undertaken at increased scale (50-200 tonnes per day) and with significantly increased efficiency. The production of large quantities of LH₂ and the subsequent road transportation and storage at vehicle re-fuelling stations (often in urban areas) present new challenges in terms of ensuring the safety of the public. For these reasons, as part of the IDEALHY project, the safety of the proposed production and supply system is to be considered.

This report is a review of available information of relevance to the hazards presented by the release of LH_2 . Depending on how LH_2 is released, different hazardous scenarios may result, including: the formation of a pool which evaporates and disperses; a pool fire in the case of ignition; a flashing liquid jet fire; accumulation of gaseous hydrogen in confined and congested areas and the subsequent explosion hazard.

The focus of the review was on identifying experimental data which can provide parameters critical to the development of mathematical models. Overall, there was a dearth of experimental data on the hazards posed by LH₂, especially at large scale. Limited information was available on the evaporation from LH₂ spills and the subsequent dispersion. Only one small scale study of LH₂ pool fires was identified and none for flashing liquid jet fires. Gas accumulation and explosion hazards were perhaps the most studied, including experimental studies at full scale in re-fuelling station geometries. However, none specifically related to gas accumulation and explosions arising from a spill of LH₂ in a confined or congested region were identified. Other areas of uncertainty are the potential for a Boiling Liquid Expanding Vapour Explosion (BLEVE) of a LH₂ storage tank (or road tanker) and whether or not a Rapid Phase Transition (RPT) event could occur in the event of spillage onto water.

It is concluded that further experimental work is needed, preferably at large scale, focussed on the hazards arising from LH₂ releases.

Key words

Liquid hydrogen, hazards, spills, dispersion, fire, explosion, BLEVE, RPT

Abbreviations

LH ₂	Liquefied Hydrogen
LNG	Liquefied Natural Gas
NG	Natural Gas
NTP	Normal temperature and pressure
tpd	tonnes per day
WP	Work Package
RPT	Rapid Phase Transition
BLEVE	Boiling Liquid Expanding Vapour Explosion

Tab	le of	f Co	nte	nts

Disc	clain	ner	. ii
Pub	lish	able summary	iv
Key	woi	ds	iv
Abb	orevi	ations	. v
Tab	le of	Contents	vi
1	Bac	kground	. 1
2	Intr	oduction and Scope of Report	. 2
3	Pro	perties and Characteristics of Hydrogen and Liquefied Hydrogen	. 3
4	Rel	eases forming Pools of LH2, Evaporation and Dispersion	. 6
4.	.1	LH2 Pool Formation on Solid Surfaces and Evaporation	. 6
4.	2	LH2 Pool Formation on Water, Evaporation and the Potential for an RPT	. 7
4.	3	Vapour Dispersion from Liquid Pools	. 8
5	Pro	longed Pressurised Releases , Evaporation and Dispersion	10
6	lgni	tability	11
6.	.1	Flammability Limits and Ignition Energy	11
6.	2	Ignition Sources	11
6.	3	Spontaneous Ignition	12
6.	.4	Liquid Hydrogen and Solid Oxygen	12
7	Fire	S	13
7.	.1	Pool Fires	13
7.	2	Jet Fires	15
	7.2.	1 Gaseous jet fires	15
	1	.1.1.1 Gaseous hydrogen jet flame length	15
	1	.1.1.2 Fraction of heat radiated	19
	7.2.	2 Liquid hydrogen jet fires	19
8	Gas	Accumulation and Explosion Hazards	21
8.	.1	Gas accumulation from gaseous releases	21
8.	2	Gas accumulation from liquefied releases	22
8.	.3	Gas explosions	22
	8.3.	1 Unconfined uncongested geometries	22
	8.3.	2 Confined vented explosions with and without congestion	23
	8.3.	3 Explosions in congested regions with no or limited confinement	23
9	BLE	VE (Boiling Liquid Expanding Vapour Explosion), Fireballs	24

10	Summary and Conclusions	25
11	References	26