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Design Principles for High-Efficiency 
Hydrogen Liquefaction Processes
Abstract
The recently started IDEALHY project targets substantial reductions of 
power consumption for large-scale hydrogen liquefaction through 
conceptual process design and components development. Compared 
to current state-of-the-art mid-scale liquefiers with approximately 
5 tons/day capacity, a goal of 45–48% reduction in specific liquefaction 
power is stated for a conceptual large-scale plant.

Achievement of such ambitious goals requires thorough and 
systematic screening and selection of process components and 
required sub-systems with high focus on energy efficiency in the 
process design and integration task.

Based on the selection of process principles, the number of options for 
process design will be narrowed down to a selection of promising 
candidates and ultimately one or two process candidates for detailed 
elaboration.

This presentation will give an overview of the current findings from the 
work on process development of the conceptual large-scale hydrogen 
liquefier. Findings will include process layout, configuration of 
refrigeration cycles for pre-cooling and cryogenic cooling of hydrogen, 
refrigerants selection, components and process integration issues. 
Moreover, the impact of feed and product specifications on process 
design will be discussed.

H
2
 process pressure

• Hydrogen feed pressure: 20 bar 
 (common process pressure for state-of-the-art liquefiers)
• Higher pressure may be beneficial for overall energy efficiency as 
 more heat is rejected at higher temperature, requiring less exergy 
 transfer in cooling process

Expansion and liquefaction device
Optimal combination of hydrogen pressure and temperature before 
final expansion and liquefaction depends partly on the expansion 
device used
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Generic process structure and sub-systems
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Phase envelope

J–T throttling

Rotating expander

Expansion to 
saturated or 
sub-cooled liquid 
(once-through) 

Expansion with flash gas 
(recycle or additional 
condensation required) 

Saturation line at 2 bar

Liquefaction plant size
“Medium” size – built in 
workshop
+ State-of-the-art
- Limited efficiency

Large size – site assembly
+ Efficiency increasing 
 with size
- 'Poor' assembly conditions

Expanders
Energy recovery by compander
+ State-of-the-art
- Reciprocal interference of efficiencies
- Sealing losses
- Narrow operating field

Energy recovery by generator
+ 'Freedom' of design
+ Wide operating field
- Hydrogen embrittlement
- Sophisticated design

Refrigeration cycles
Pre-cooling cycle alternatives
• Nitrogen (external LN

2
 feed or closed-loop cycle)        80 K

• Hydrocarbons or mixed refrigerants        Temperature depending on 
 components
• Light gas: H

2
, He, Ne – integrated part of cryogenic cycle

• LNG re-gasification in the case of adjacent LNG terminal       110 K

Cryogenic cooling cycle alternatives
• Claude cycle (state-of-the-art)
• Reversed Brayton cycle (higher energy efficiency potential than 
 Claude cycle due to use of rotating expanders with possible power 
 recovery)
• H

2
, He, Ne or combinations of these as refrigerant

Compressors
Turbo-compressors
+ Highest efficiency
+ Very high availability
+ Largest suction volume available
- Very low pressure ratio per stage for light gases
- Hydrogen embrittlement

Reciprocating compressors
+ High efficiency
+ State-of-the-art for hydrogen
- Limited suction volume per machine
- High maintenance demand
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device LH2 product
22.8 K (sat.)

2 bar
98% para-H2
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