

Making Hydrogen Liquefaction more competitive:

Overview of the Project and of the Supply Pathways considered

Petter Nekså, SINTEF Energy Research Klaus Stolzenburg, PLANET

Overview of the Presentation

- Introduction to IDEALHY
- Hydrogen Supply Pathways Selected
- Life Cycle Assessment Method and Baseline Cases
- Aspects related to liquefaction

Further Co-Authors:

- Anna Evans, Charlotte Hatto, Nigel Mortimer, Onesmus Mwabonje, Jeremy Rix (North Energy)
- Ritah Mubbala (PLANET), Alice Elliot, Jurgen Louis (Shell)
- David Berstad (SINTEF)

Background

- Hydrogen expected to become an important clean transport fuel
- Liquid hydrogen (LH₂) most effective way to supply larger refuelling stations in the medium term (in absence of pipeline network) and for transport from remote production sites
- Today hydrogen liquefaction is considered:
 - ➢ expensive
 - energy-intensive
 - relatively small-scale
 (typically 5-10 tonnes/day)

Picture: Linde

• Without competitive liquefaction capacity, serious risk to hydrogen infrastructure expansion

idealhy

IDEALHY Project Outline

- Investigate the different steps of the liquefaction process in detail
- Use innovations and greater integration to
 - Reduce specific energy consumption by 50 % compared to state of the art
 - Reduce investment cost
- Conceptual process design and components development
- Plan for a large-scale demonstration in the range of up to 200 tonnes per day

Picture: Linde

IDEALHY Consortium

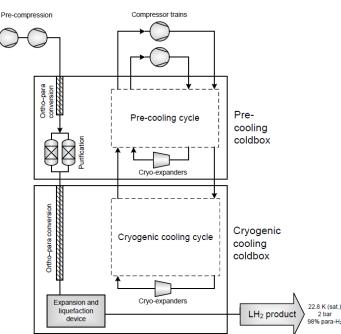
Duration: November 2011 – October 2013

Co-Funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative

New Energy World

fuel cells & hydrogen for sustainabilit

Project Steps and Results


1) Technology analysis & conceptual liquefaction process assessment

(see poster presentations Tue 69,105,108)

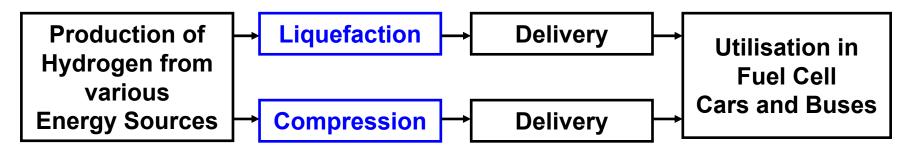
- Technology overview
- Boundary conditions and duty specifications
- Screening and pre-selection
 of large-scale liquefaction concepts and alternatives for
 central sub-systems
- → Functional schemes of promising highly efficient large-scale hydrogen liquefaction processes

293 K 20 bar

 \rightarrow Targets, criteria and boundary conditions

Project Steps and Results

- 2a) Process optimisation
 - → Optimised process scheme and technical design of selected processes
- **2b) Whole chain assessment**
 - Scenario development → <u>Supply Pathways</u>
 - Hazard and risk assessment and mitigation measures
 - Life cycle and economic assessment
 - → Liquid hydrogen implementation scenario and whole chain assessment benchmarks
- 3) Planning and preparation of a large-scale demonstration

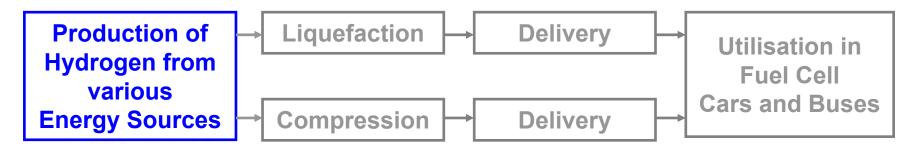


Supply Pathways of Hydrogen as a Fuel for Road Vehicles

idealhy

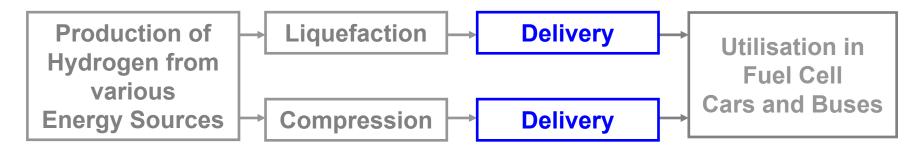
(50 tpd)

() SINTEF


Core element: Liquefaction

- Expected max. capacity per "cold box": 50 tonnes/day (tpd)
 - Assume 1 cold box per plant if hydrogen produced in demand country / region
 - Assume 10 cold boxes in parallel (500 tpd) if production region and demand region far from each other
- Compression only considered for "production = demand region"

Hydrogen Production Routes


- Case "resource = demand region" (50 tpd)
 - > Surplus wind electricity \rightarrow electrolysis \rightarrow H₂ cavern storage
 - ➤ CNG / LNG → reformation with and without CCS (200 tpd of which 50 tpd for liquefaction)
- Case "resource ≠ demand region" (500 tpd)
 - ➤ Coal and CNG → gasification / reformation with CCS
 - > Solar power \rightarrow electrolysis

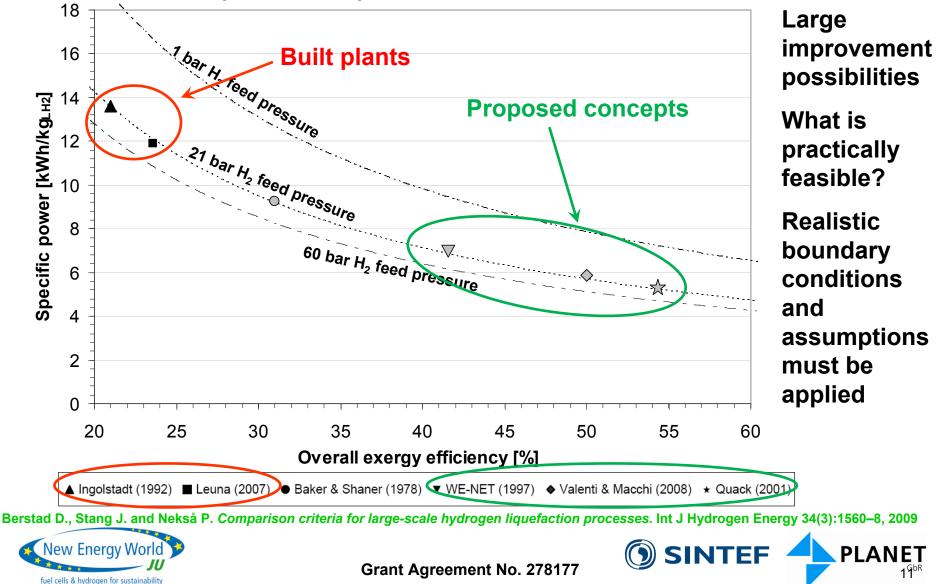
Hydrogen Delivery

• Liquid delivery

- Resource region to demand region by ship
- ➢ Up to 4.000 kg per road trailer
- Gaseous delivery
 - > 200 bar today (< 600 kg per trailer)
 - 500 bar in the future (expected about 1.000 kg per trailer)
- Pipeline delivery expected beyond time horizon (2018 2030)

Life Cycle Assessment Method and Baseline Cases

- Use of transparent spreadsheet workbooks
- Facilitate both
 - Attributional LCA (for regulatory purposes, such as the EC Renewable Energy Directive) and
 - Consequential LCA (for policy analysis)
- Focus on primary energy inputs and greenhouse gas emissions (CO₂, CH₄ and N₂O) and, in economic terms, total internal costs
- Baseline cases are petrol and diesel
- Further detail in Baseline Results Report and Pathway Report, soon available on www.idealhy.eu



Efficiency of Built and Proposed Hydrogen Liquefiers,

recalculated to equalised feed pressure

Conclusions

- High efficiency hydrogen liquefiers is required to realise an efficient hydrogen supply chain utilising LH2
- This may be obtainable for large-scale liquefiers with energy optimisation, extensive process integration and high-efficiency compressors and expanders
- 40–50% reduction of power consumption, down from 12 to 6–7 kWh/kg, will represent a radical improvement within largescale hydrogen liquefaction and contribute to further enhancement of the competitiveness of LH2 as energy carrier in an hydrogen-based energy chain
- IDEALHY will develop a technology platform that contribute to realise this

